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The International Workshop on Big Data Visual Exploration and Analytics (BigVis) is an annual event, 

which brings together scholars from the communities of Data Management & Mining, Information 

Visualization, Machine Learning and Human-Computer Interaction. The 7th BigVis event (BigVis 2024)1 

was organized in conjunction with the 50th International Conference on Very Large Databases (VLDB 

2024) in Guangzhou, China. The organizing committee invited 5 research experts to provide their 

insights and discuss future research challenges related to Data Exploration and Visual Analytics.  

The invited experts are Sihem Amer-Yahia (CNRS, Université Grenoble Alpes), Leilani Battle (University 

of Washington), Yifan Hu (Northeastern University), Dominik Moritz (Carnegie Mellon University & 

Apple) and Aditya Parameswaran (Berkeley University). This post presents their responses: 

1. Truly Personalized Visual Data Exploration  

Sihem Amer-Yahia, CNRS, Université Grenoble Alpes, France 

Future Challenges 

A visualization is a pair of the form (data, visual element). For instance, data could be a distribution of 

gender values and the visual element could be a pie chart. A distribution could be mapped to various 

elements using algebras such as Vega-Lite [1]. Different users appreciate different such mappings. It is 

hence only natural to ask the question: What is the meaning of personalized data visualization when 

both data and mapping of data to visual elements can be personalized? Should they both be 

personalized? Usually, only data is personalized. A follow up question is: Can we learn those 
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visualizations from observing people interacting with data and visual elements? How expressive should 

this interaction be? How granular should it be? Should we decouple data recommendations from visual 

recommendations and allow people to provide feedback on them separately and together? Can we do 

that in a privacy-preserving manner? Finally, since we are talking about users interacting with data and 

visualizations, how to ensure sub-second interaction time in personalized visual exploration? 

These challenges lay the ground for new research that is truly at the crossroad of databases for privacy-

preserving machine learning and declarative visualization. A promising avenue to address all three 

challenges is to combine the relational algebra with Vega-Lite to extend it to handle in-database Multi-

Armed Bandits for online learning [2] and use in-database federated learning to ensure privacy [3]. The 

augmented algebra will provide the ability to blend data and visualization recommendations in the 

same framework. It will open new opportunities to co-optimize the training and inference of ML models 

while taking into consideration user feedback. This is possible by revisiting the reward according to the 

data and visual elements that are best preferred by the user as they explore (data, visual element) pairs 

in sequence. Speeding up ML inference can be done by materializing views representing the most 

common exploration pathways and personalizing them on-the-fly. Finally, federated learning can 

leverage cryptographic schemes such as homomorphic encryption to compute rewards without 

revealing data in clear. That is particularly important when multiple users explore data.  

Emerging Applications 

The framework outlined above is applicable in a key emerging application, enabling visual exploratory 

data analysis for users with different data science and domain expertise. We developed Dora The 

Explorer, an RL-powered data exploration system for astronomers [4], and DashBot [5], an adaptive 

MAB-powered system for medical professionals. The astronomers we worked with were well-versed in 

data science and preferred partially guided approaches where they could intervene and change the 

automatic decisions made by the machine learned models. The doctors we worked demanded to 

validate the patient analytics that were recommended to them. This was fed back into the system to 

best learn which next analytics to provide. Enabling this conversation between automated data 

exploration and people with different expertise levels is the next frontier in personalized visual data 

exploration. 

2. Effective Guidance and Interoperability 

Leilani Battle, University of Washington, USA  

How do we provide the “right” guidance?  

With the rise of AI assistants in data science [9], we are seeing more and more auto-generated 

recommendations for what analysts should explore next in their data [13]. However, how do we know 

that these assistants are providing the right guidance [10]? For example, current techniques often 



produce generic recommendations with limited benefits over standard baselines [13][6], which may be 

due in part to the underlying algorithms and models lacking domain context when generating 

recommendations [6]. Further, certain analysts may be too trusting of auto-generated 

recommendations regardless of rigor/quality [12]. Given their potential influence over human analysts, 

how can we ensure that our recommendations avoid introducing bias or causing harm? We need new 

methods for incorporating domain context into the underlying algorithms and AI models as well as 

benchmarks for validating their outputs. Furthermore, we need a deeper understanding of how auto-

generated recommendations influence the reasoning of human analysts [9]. As part of this effort, we 

encourage the community to expand and strengthen collaborations across data science (e.g., among 

HCI, visualization, and data management researchers) as well as with other fields such as psychology 

and cognitive science. 

How do we optimize interoperable components within larger data science ecosystems? 

Computational notebooks are integral to collaborative data science work given their flexibility and ease 

of sharing with others [11][14]. However, notebook environments like JupyterLab can be challenging to 

design for [8]. Further, the data management and data visualization communities are used to building 

systems they control [7]. Notebooks contradict that assumption. Beyond the known challenges of 

working within an existing development environment, we observe few projects that profile or optimize 

the performance of data management/visualization tools that run alongside them. For example, the 

user drives the workload that big data researchers intend to optimize, but the user’s interactions with a 

DBMS may be influenced by other tools and packages they have also imported into the underlying 

notebook. Thus, we must investigate how this blending of tools may alter the typical data processing 

workloads we see in other big data contexts. Otherwise, our optimizations may miss the full context of 

how a tool is being used and thus fail to address the user’s performance concerns. 

3. Auto-generated Big Network Data Visualization and 

Story Telling by Learning Human Sense of Aesthetics 

Yifan Hu Northeastern University, USA  

Automatically learning to generate aesthetically pleasing networking visualization through 

human examples 

Information visualization enables the graphical representation of data and information that helps the 

users to find patterns, trends, and relationships within the data, and to communicate complex data sets 

clearly and effectively. In the field of network visualization, traditionally, visualization of undirected 

graphs relies on heuristics, especially those based on modeling graphs as physical systems, with the 

belief that minimizing the energy of such systems lead to aesthetic looking layout of the graph that 



help to illustrate the underlining unstructured data. There are two problems with this approach. First, 

traditional force directed algorithms [15][16][17] can have high complexity and may not find the optimal 

solution. Second, and more importantly, it is not proven that human aesthetic preference can be 

modeled well by physical systems in all cases. With the advent of deep learning, there is a growing 

interest in leveraging the power of neural networks to help network visualization (e.g., [18][19]). In 

particular, it is now possible to use deep learning to expand the horizon of traditional graph visualization 

in a number of directions. Firstly, it was demonstrated that a graph neural network (GNN) model is able 

to be employed to optimize arbitrary differentiable objective functions. Once trained, such a model can 

be applied to arbitrary graphs never seen in the training data and create visualizations which optimize 

the objective function even better than traditional force directed algorithms [20][21][23][23]. Secondly, 

it was shown that by using Generative Adversarial Network (GAN), we can even train neural networks 

to optimize non-smooth objective functions [24]. In fact, this approach does not require the access of 

the objective function at all, and only requires a comparative function that can choose between two 

visualizations, the “better” one (based on a hidden objective function unknown to GAN). This opens the 

avenues for future investigation: instead of optimizing the energy of the physical system, or other 

arbitrary objectives such as edge crossing, we should be able to model the human sense of aesthetics 

directly. For example, if reducing edge cross is what’s most important for human, Tiezzi et al. [21] 

demonstrated that a fully connected network can be used to classify whether two edges cross; on the 

other hand, Wang et al [24] has shown that the discriminator in a GAN setup can be trained to choose 

drawings with lower number of edge crossing, by “teaching” it only with pairs of bad and good drawings 

examples. The holy grail is to train a model on a collection of example visualizations, to learn human 

visual preference. We believe such a system is possible, but the challenges are to be able to scale GNN, 

GAN or other deep learning-based models to very large unstructured data, as well as to collect large 

amounts of human preference examples. We have witnessed some progress in the scalability area 

already, e.g., by the use of multilevel paradigm [25][26][27]. Further work is needed to curate large 

amounts of training data, and to make deep learning-based network visualization adapt to human 

preferences, incorporating human specified constraints, and to run even faster than traditional network 

layout algorithms. 

Generate not just the visualization but also the story behind it 

Another future direction for research involves not just producing the visualization itself but also crafting 

a narrative, or even combining it with animations/videos that elucidate the patterns depicted within the 

visualization, thus directing the user's attention to the most crucial aspects of generated visualization. 

Accomplishing this task will necessitate leveraging a multimodal large language model (LLM) trained 

extensively on a diverse corpus consisting of source data (e.g., CSV files, unstructured data), their 

visualizations, and their corresponding captions extracted from past visualization and other scientific 

literature. If we can solve the above challenges, we can then apply such a model to any data to be 



analyzed, and automatically generate sample visualizations, animations and narratives that are not only 

aesthetically pleasing to look at, but also informative, and with a well told story about the visualization. 

4. Queries at the Speed of Human Thought 

Dominik Moritz, Carnegie Mellon University & Apple, USA 

Machine learning development has shifted from being primarily model-centric to primarily data-centric 

[28]. In the early days of ML, engineers often trained models on hundreds or thousands of data points 

and meticulously tweaked the modeling function so as not to overfit the data. With the popularization 

of deep learning, however, data became increasingly important, and many models were derived from 

pre-trained models. Today, foundation models have similar transformer architectures, and big quality 

differences stem from the data they are trained or fine-tuned on. The data management community is 

well-equipped to tackle many of the quality and quantity challenges [29]. Yet, the full AIML lifecycle of 

requirement elicitation [30], data preparation, monitoring, tuning, and evaluation requires oversight by 

people who have to slice and dice millions or billions of data records. Since models synthesize patterns, 

a single record rarely defines the behavior of a model, and therefore ML engineers need to understand 

patterns and trends in relevant subsets [31]. Relevant subsets are hard to predict and can rarely be 

precomputed. ML engineers need to grasp often subtle patterns in large datasets full of information. 

As Herbert A. Simon puts it “What information consumes is rather obvious: it consumes the attention of 

its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that 

attention efficiently”. This need to efficiently allocate attention is where data visualization becomes 

crucial. 

Data visualization leverages our powerful perceptual systems to let us see patterns and trends in data. 

Data visualization in the AIML lifecycle gives us a way to overview and design datasets for training, fine-

tuning, and evaluation. It enables serendipitous discovery of data patterns and issues. At the core of 

the necessary interactive analysis are interfaces that are fast and fast to use. On the one hand, well-

designed mixed initiative systems [32] for analysis make people faster [33][34]. We should continue to 

invest in good tooling that eliminates barriers to effective analysis. On the other hand, delays in 

interactive systems lead to fewer observations made [35] and could steer analysts towards convenient 

and fast data along with all the resulting biases. Fast databases, approximation [36][37], prefetching 

[38], and indexing techniques [39][40] can help developers build fast interactive systems. However, they 

add complexity for tool builders that may prevent them from quickly adapting interfaces to new needs. 

Modern data architectures abstract from the low-level optimizations like Mosaic [41] and are being 

adopted rapidly. Yet, many opportunities remain for deeper integration with databases, which are often 

optimized for order-of-second responses rather than real-time order-of-millisecond responses or may 

not support many of the encoding transformations used in effective data visualizations like cartographic 



projections. A lot of exciting work remains to explore new ways to effectively present billion-record 

datasets at the speed of human thought to facilitate effective analysis and communication. 

5. Harnessing Generative AI for Data Analytics 

Aditya Parameswaran, Berkley University, USA 

Recent advances in Generative AI, specifically Large Language Models (LLMs), have the promise to fully 

democratize data work. We have within our grasp the ability to allow anyone, even without a coding 

background, to do data work at scale—spanning data exploration, transformation, and insight discovery. 

LLMs can help bridge the gap between users and their data: they can help communicate with users 

better in natural language, and also understand the data itself better, spanning both structured and 

unstructured data formats.  

Despite their promise, however, LLMs are unfortunately too brittle for data work. They often make 

mistakes, disregard instructions, and are prone to “hallucinating” incorrect facts. Users find it difficult to 

both understand the reasoning process of the LLM and recover from LLM failures. Users struggle to 

even understand how to ask the LLM to perform a specific task: small changes in wording can lead to 

drastically different outcomes. So, to democratize data work with LLMs, we will need to leverage ideas 

from multiple disciplines–including databases and human-computer interaction–by tackling the 

following research questions: 

How can we make LLM-powered data tools more robust? The main difficulty with LLMs is that they 

make mistakes in an unpredictable fashion. Thus, for any data task at scale, it is virtually guaranteed 

that there will be LLM mistakes. So, to enhance the robustness of LLMs for data tasks, there are several 

unanswered questions. How do we best (and automatically) decompose tasks into smaller "tightly 

scoped" ones that are less difficult for LLMs? How do we ensure that these smaller tasks have a certain 

degree of reliability, perhaps by combining the results of one LLM with those of others with different 

capabilities? How do we deal with LLM inconsistencies (e.g., LLMs say A>B, B>C and C>A)? Can we 

catch LLM mistakes before they occur, perhaps by having LLMs themselves synthesize assertions and 

verify each other's work [44][45]? This work is closely related to the data management community’s 

work on crowdsourcing, which dealt with error-prone humans, much like error-prone LLMs [43]. 

How can LLM-powered data tools help analyze unstructured data? The vast majority of data exists in 

unstructured, difficult to analyze, formats including PDFs, word files, images, and videos. Now, with the 

power of LLMs, we may now be able to empower users to make sense of such datasets via intuitive 

interfaces [42]. For example, journalists investigating police misconduct may want to extract officer 

names from internal affairs reports, or search for specific activities in camera feeds, all without code. 

This leads to several questions, such as: How do we design lightweight interaction modalities that allow 



users to "guide" the system by navigating, searching, and highlighting points of interest in these media? 

How can we best leverage LLMs to automatically craft and suggest transformations based on the 

content, user guidance, and historical data? How do we design presentation techniques to help users 

"decide" which among a list of ranked suggestions is the one they would like to pursue? 

How should LLM-powered data tools interact with users? Present day LLMs employ a chat-based 

natural language interface. While this interface is flexible, it is a poor fit for data work as it violates many 

fundamental human-centered design principles, including giving users a place to start or recover from 

errors, as well as showcasing the capabilities of the underlying system. Moreover, it sits separate from 

existing popular data tools such as spreadsheets or computational notebooks, where data exploration 

and visualization actually happen [47]. So, we ask the question: how should next-generation data work 

interfaces look like? What are the strengths and weaknesses of various forms of user input, including 

traditional code, natural language, form-based interfaces, demonstration, examples, and direct 

manipulation [46], for the purpose of data work? If we do support other forms of input beyond natural 

language, how do we translate such input to and from natural language so that it can be best 

interpreted by an LLM? Finally, data work is rarely a solo activity—how do we best support collaboration 

and handing-off work across individuals? 

Overall, I believe this ambitious, but risky vision of democratizing big data work by leveraging the power 

of LLMs to both understand users and our data better, has the potential to have tremendous impact 

across a wide variety of domains.     

Reference  

[1] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, Jeffrey Heer, Vega-Lite: A Grammar of 

Interactive Graphics, IEEE TVCG, 2017 

[2] Radu Ciucanu, Marta Soare, Sihem Amer-Yahia, Implementing Linear Bandits in Off-the-Shelf SQLite, EDBT 

2022 

[3] Sotirios Tzamaras, Radu Ciucanu, Marta Soare, Sihem Amer-Yahia, FeReD: Federated Reinforcement Learning 

in the DBMS, ACM CIKM, 2022 

[4] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-Έquille, Maximilian Fabricius, Srividya Subramanian. 

DORA THE EXPLORER: Exploring Very Large Data with Interactive Deep Reinforcement Learning, ACM CIKM, 

2021 

[5] Sandrine Da Col, , Radu Ciucanu, Marta Soare, Nassim Bouarour, Sihem Amer-Yahia. DashBot: An ML-Guided 

Dashboard Generation System, ACM CIKM, 2021 

[6] Bao, C.S., Li, S., Flores, S.G., Correll, M. and Battle, L., Recommendations for visualization recommendations: 

Exploring preferences and priorities in public health. ACM CHI 2022 

[7] Battle, L. and Scheidegger, C. A structured review of data management technology for interactive visualization 

and analysis. IEEE TVCG 2020 



[8] Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A. and Barik, T. What's wrong with computational 

notebooks? Pain points, needs, and design opportunities. ACM CHI, 2020 

[9] Gu, K., Grunde-McLaughlin, M., McNutt, A., Heer, J. and Althoff, T. How do data analysts respond to ai 

assistance? a wizard-of-oz study. ACM CHI, 2024 

[10] Heer, J. Agency plus automation: Designing artificial intelligence into interactive systems. Proceedings of the 

National Academy of Sciences, 2019 

[11] Roy, A., Raghunandan, D., Elmqvist, N. and Battle, L. How I Met Your Data Science Team: A Tale of Effective 

Communication. IEEE VL/HCC, 2023 

[12] Zehrung, R., Singhal, A., Correll, M. and Battle, L. Vis ex machina: An analysis of trust in human versus 

algorithmically generated visualization recommendations. ACM CHI, 2021 

[13] Zeng, Z., Moh, P., Du, F., Hoffswell, J., Lee, T.Y., Malik, S., Koh, E. and Battle, L. An evaluation-focused 

framework for visualization recommendation algorithms. IEEE TVCG, 2021 

[14] Zhang, A.X., Muller, M. and Wang, D. How do data science workers collaborate? roles, workflows, and tools. 

ACM CHI, 2020 

[15] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 1984 

[16] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Information 

Processing Letters, 1989 

[17] Emden Gansner, Yehuda Koren and Stephen North, Graph Drawing by Stress Majorization, Graph Drawing, 

2004 

[18] Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu. Deepdrawing: A deep learning approach to graph 

drawing. IEEE TVCG, 2019 

[19] O.-H. Kwon and K.-L. Ma. A deep generative model for graph layout. IEEE TVCG, 2020 

[20] Xiaoqi Wang, Kevin Yen, Yifan Hu, Han-wei Shen, DeepGD: A Deep Learning Framework for Graph Drawing 

Using GNN, IEEE CG&A, 2021 

[21] Matteo Tiezzi, Gabriele Ciravegna, and Marco Gori. Graph neural networks for graph drawing. IEEE 

Transactions on Neural Networks and Learning Systems, 2024 

[22] Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma, and Huamin Qu. Deepdrawing: A deep 

learning approach to graph drawing. IEEE TVCG, 2020 

[23] Loann Giovannangeli, Frederic Lalanne, David Auber, Romain Giot, and Romain Bourqui. Toward efficient 

deep learning for graph drawing (DL4GD), IEEE TVCG, 2024 

[24] Xiaoqi Wang, Kevin Yen, Yifan Hu, and Han-Wei Shen, SmartGD: A GAN-Based Graph Drawing Framework 

for Diverse Aesthetic Goals, IEEE TVCG, 2023 

[25] Kai YAN, Tiejun ZHAO, and Muyun YANG. Graphuly: Graph u-nets-based multi-level graph layout. IEICE 

Transactions on Information and Systems, 2022 

[26] Florian Grötschla and Joël Mathys and Robert Veres and Roger Wattenhofer, CoRe-GD: A Hierarchical 

Framework for Scalable Graph Visualization with GNNs, International Conference on Learning 

Representations, 2024 

[27] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural networks 

via graph coarsening. ACM SIGKDD, 2021 

[28] Zha, Daochen, et al. "Data-centric artificial intelligence: A survey." arXiv preprint, 2023 

[29] Whang, Steven Euijong et al. “Data collection and quality challenges in deep learning: a data-centric AI 

perspective.” VLDBJ, 2021 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9950620
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9950620
https://www.jstage.jst.go.jp/article/transinf/E105.D/12/E105.D_2022EDL8050/_pdf


[30] Robertson, Samantha, et al. "Angler: Helping machine translation practitioners prioritize model 

improvements." ACM CHI, 2023 

[31] Cabrera, Ángel Alexander, et al. "Zeno: An interactive framework for behavioral evaluation of machine 

learning." ACM CHI, 2023 

[32] Allen, James E., Curry I. Guinn, and Eric Horvtz. "Mixed-initiative interaction." IEEE Intelligent Systems and their 

Applications, 1999 

[33] Wongsuphasawat, Kanit, et al. "Voyager: Exploratory analysis via faceted browsing of visualization 

recommendations." IEEE TVCG, 2015 

[34] Epperson, Will, et al. "Dead or alive: Continuous data profiling for interactive data science." IEEE TVCG, 2023 

[35] Liu, Zhicheng, and Jeffrey Heer. "The effects of interactive latency on exploratory visual analysis." IEEE TVCG, 

2014 

[36] Hellerstein, Joseph M., Peter J. Haas, and Helen J. Wang. "Online aggregation". ACM SIGMOD, 1997 

[37] Moritz, Dominik, et al. "Trust, but verify: Optimistic visualizations of approximate queries for exploring big 

data." ACM CHI, 2017 

[38] Battle, Leilani, Remco Chang, and Michael Stonebraker. "Dynamic prefetching of data tiles for interactive 

visualization." ACM SIGMOD, 2016 

[39] Liu, Zhicheng, Biye Jiang, and Jeffrey Heer. "imMens: Real‐time visual querying of big data." CGF, 2013. 

[40] Moritz, Dominik, Bill Howe, and Jeffrey Heer. "Falcon: Balancing interactive latency and resolution sensitivity 

for scalable linked visualizations." ACM CHI, 2019 

[41] Heer Jeffrey, and Dominik Moritz. "Mosaic: An architecture for scalable & interoperable data views." IEEE 

TVCG, 2023 

[42] Lin, Y., Hulsebos, M., Ma, R., Shankar, S., Zeigham, S., Parameswaran, A., & Wu, E. Towards Accurate and 

Efficient Document Analytics with Large Language Models. arXiv preprint, 2024 

[43] Parameswaran, A., Shankar, S., Asawa, P., Jain, N., & Wang, Y. Revisiting prompt engineering via declarative 

crowdsourcing. arXiv preprint, 2023 

[44] Shankar, S., Li, H., Asawa, P., Hulsebos, M., Lin, Y., Zamfirescu-Pereira, J., Chase, H., Fu-Hinthorn, W., 

Parameswaran, A., & Wu, E. Spade: Synthesizing assertions for large language model pipelines. arXiv preprint, 

2024. 

[45] Shankar, S., Zamfirescu-Pereira, J., Hartmann, B., Parameswaran, A., & Arawjo, I. Who Validates the Validators? 

Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences. arXiv preprint, 2024 

[46] Siddiqui, T., Luh, P., Wang, Z., Karahalios, K., & Parameswaran, A. Shapesearch: A flexible and efficient system 

for shape-based exploration of trendlines. ACM SIGMOD, 2020 

[47] Lee, D.L., Tang, D., Agarwal, K., Boonmark, T., Chen, C., Kang, J., Mukhopadhyay, U., Song, J., Yong, M., Hearst, 

M., et al. Lux: always-on visualization recommendations for exploratory dataframe workflows. PVLDB, 2021 

 

Copyright @ 2024, Sihem Amer-Yahia, Leilani Battle, Yifan Hu, Dominik Moritz, Aditya Parameswaran, Nikos 

Bikakis, Panos K. Chrysanthis, Guoliang Li, George Papastefanatos, Lingyun Yu. All rights reserved. 

 


